Exercise 2.3.3

Consider the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to the boundary conditions

$$
u(0, t)=0 \quad \text { and } \quad u(L, t)=0
$$

Solve the initial value problem if the temperature is initially
(a) $u(x, 0)=6 \sin \frac{9 \pi x}{L}$
(b) $u(x, 0)=3 \sin \frac{\pi x}{L}-\sin \frac{3 \pi x}{L}$
(c) $u(x, 0)=2 \cos \frac{3 \pi x}{L}$
(d) $u(x, 0)= \begin{cases}1 & 0<x \leq L / 2 \\ 2 & L / 2<x<L\end{cases}$
(e) $\quad u(x, 0)=f(x)$
[Your answer in part (c) may involve certain integrals that do not need to be evaluated.]

Solution

The heat equation and its associated boundary conditions are linear and homogeneous, so the method of separation of variables can be applied. Assume a product solution of the form $u(x, t)=X(x) T(t)$ and substitute it into the PDE

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad \rightarrow \quad \frac{\partial}{\partial t}[X(x) T(t)]=k \frac{\partial^{2}}{\partial x^{2}}[X(x) T(t)]
$$

and the boundary conditions.

$$
\begin{array}{rllll}
u(0, t)=0 & \rightarrow & X(0) T(t)=0 & & \rightarrow \\
u(L, t)=0 & \rightarrow & X(L) T(t)=0 & & \rightarrow
\end{array}
$$

Now separate variables in the PDE.

$$
X \frac{d T}{d t}=k T \frac{d^{2} X}{d x^{2}}
$$

Divide both sides by $k X(x) T(t)$. Note that the final answer for u will be the same regardless which side k is on. Constants are normally grouped with t.

$$
\underbrace{\frac{1}{k T} \frac{d T}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}
$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

$$
\frac{1}{k T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in t.

$$
\left.\begin{array}{l}
\frac{1}{k T} \frac{d T}{d t}=\lambda \\
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
\end{array}\right\}
$$

Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\alpha^{2} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{1} \cosh \alpha x+C_{2} \sinh \alpha x
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
& X(0)=C_{1}=0 \\
& X(L)=C_{1} \cosh \alpha L+C_{2} \sinh \alpha L=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sinh \alpha L=0$. Because hyperbolic sine is not oscillatory, C_{2} must be zero for the equation to be satisfied. This results in the trivial solution $X(x)=0$, which means there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
X(x)=C_{3} x+C_{4}
$$

Apply the boundary conditions now to determine C_{3} and C_{4}.

$$
\begin{aligned}
& X(0)=C_{4}=0 \\
& X(L)=C_{3} L+C_{4}=0
\end{aligned}
$$

The second equation reduces to $C_{3}=0$. This results in the trivial solution $X(x)=0$, which means zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=-\beta^{2} X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{5} \cos \beta x+C_{6} \sin \beta x
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
& X(0)=C_{5}=0 \\
& X(L)=C_{5} \cos \beta L+C_{6} \sin \beta L=0
\end{aligned}
$$

The second equation reduces to $C_{6} \sin \beta L=0$. To avoid the trivial solution, we insist that $C_{6} \neq 0$. Then

$$
\begin{aligned}
\sin \beta L & =0 \\
\beta L & =n \pi, \quad n=1,2, \ldots \\
\beta_{n} & =\frac{n \pi}{L} .
\end{aligned}
$$

There are negative eigenvalues $\lambda=-n^{2} \pi^{2} / L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{5} \cos \beta x+C_{6} \sin \beta x \\
& =C_{6} \sin \beta x \quad \rightarrow \quad X_{n}(x)=\sin \frac{n \pi x}{L}
\end{aligned}
$$

n only takes on the values it does because negative integers result in redundant values for λ. With this formula for λ, the ODE for T becomes

$$
\frac{1}{k T} \frac{d T}{d t}=-\frac{n^{2} \pi^{2}}{L^{2}} .
$$

Multiply both sides by $k T$.

$$
\frac{d T}{d t}=-\frac{k n^{2} \pi^{2}}{L^{2}} T
$$

The general solution is written in terms of the exponential function.

$$
T(t)=C_{7} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \quad \rightarrow \quad T_{n}(t)=\exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X_{n}(x) T_{n}(t)$ over all the eigenvalues.

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

Apply the initial condition now to determine B_{n}.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

Part (a)

Here the initial condition is $u(x, 0)=6 \sin \frac{9 \pi x}{L}$.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}=6 \sin \frac{9 \pi x}{L}
$$

By inspection we see that

$$
B_{n}=\left\{\begin{array}{ll}
0 & \text { if } n \neq 9 \\
6 & \text { if } n=9
\end{array} .\right.
$$

The general solution for u reduces to

$$
u(x, t)=B_{9} \exp \left(-\frac{k(9)^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{9 \pi x}{L}
$$

Therefore,

$$
u(x, t)=6 \exp \left(-\frac{81 \pi^{2} k}{L^{2}} t\right) \sin \frac{9 \pi x}{L} .
$$

Part (b)

Here the initial condition is $u(x, 0)=3 \sin \frac{\pi x}{L}-\sin \frac{3 \pi x}{L}$.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}=3 \sin \frac{\pi x}{L}-\sin \frac{3 \pi x}{L}
$$

By inspection we see that

$$
B_{n}=\left\{\begin{array}{ll}
0 & \text { if } n \neq 1, n \neq 3 \\
3 & \text { if } n=1 \\
-1 & \text { if } n=3
\end{array} .\right.
$$

The general solution for u reduces to

$$
u(x, t)=B_{1} \exp \left(-\frac{k(1)^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{\pi x}{L}+B_{3} \exp \left(-\frac{k(3)^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{3 \pi x}{L} .
$$

Therefore,

$$
u(x, t)=3 \exp \left(-\frac{\pi^{2} k}{L^{2}} t\right) \sin \frac{\pi x}{L}-\exp \left(-\frac{9 \pi^{2} k}{L^{2}} t\right) \sin \frac{3 \pi x}{L} .
$$

Part (c)

Here the initial condition is $u(x, 0)=2 \cos \frac{3 \pi x}{L}$.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}=2 \cos \frac{3 \pi x}{L}
$$

Multiply both sides by $\sin (m \pi x / L)$, where m is a positive integer.

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L}=2 \cos \frac{3 \pi x}{L} \sin \frac{m \pi x}{L}
$$

Integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} 2 \cos \frac{3 \pi x}{L} \sin \frac{m \pi x}{L} d x
$$

Bring the constants in front.

$$
\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=2 \int_{0}^{L} \cos \frac{3 \pi x}{L} \sin \frac{m \pi x}{L} d x
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the one where $n=m$.

$$
B_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=2 \int_{0}^{L} \cos \frac{3 \pi x}{L} \sin \frac{n \pi x}{L} d x
$$

Note that if $n=3$, then the integral on the right is zero because sine and cosine are orthogonal: $B_{3}=0$. Use the power-reducing formula for sine on the left and the product-to-sum formula for cosine-sine on the right.

$$
B_{n} \int_{0}^{L} \frac{1}{2}\left(1-\cos \frac{2 n \pi x}{L}\right) d x=2 \int_{0}^{L} \frac{1}{2}\left[\sin \left(\frac{3 \pi x}{L}+\frac{n \pi x}{L}\right)-\sin \left(\frac{3 \pi x}{L}-\frac{n \pi x}{L}\right)\right]
$$

Evaluate the integrals.

$$
\begin{aligned}
B_{n}\left(\frac{L}{2}\right)= & -\left.\frac{L}{(3+n) \pi} \cos \frac{(3+n) \pi x}{L}\right|_{0} ^{L}+\left.\frac{L}{(3-n) \pi} \cos \frac{(3-n) \pi x}{L}\right|_{0} ^{L} \\
= & -\frac{L}{(3+n) \pi}[\cos (3 \pi+n \pi)-1]+\frac{L}{(3-n) \pi}[\cos (3 \pi-n \pi)-1] \\
= & \frac{2 n L}{\left(n^{2}-9\right) \pi}\left[1+(-1)^{n}\right] \\
& B_{n}=\frac{4 n}{\left(n^{2}-9\right) \pi}\left[1+(-1)^{n}\right]
\end{aligned}
$$

Notice that B_{n} simplifies if n is even or odd.

$$
B_{n}= \begin{cases}0 & \text { if } n=2 p-1 \\ \frac{4(2 p)}{\left[(2 p)^{2}-9\right] \pi}(2) & \text { if } n=2 p, p=1,2, \ldots\end{cases}
$$

The general solution for u reduces to

$$
\begin{aligned}
u(x, t) & =\sum_{2 p=2}^{\infty} B_{2 p} \exp \left(-\frac{k(2 p)^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{(2 p) \pi x}{L} \\
& =\sum_{p=1}^{\infty} \frac{16 p}{\left(4 p^{2}-9\right) \pi} \exp \left(-\frac{4 k p^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{2 p \pi x}{L}
\end{aligned}
$$

Therefore,

$$
u(x, t)=\frac{16}{\pi} \sum_{p=1}^{\infty} \frac{p}{4 p^{2}-9} \exp \left(-\frac{4 k p^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{2 p \pi x}{L}
$$

Part (d)

Here the initial condition is $u(x, 0)=1$ if $0<x \leq L / 2$ and $u(x, 0)=2$ if $L / 2<x<L$.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}=g(x)= \begin{cases}1 & \text { if } 0<x \leq L / 2 \\ 2 & \text { if } L / 2<x<L\end{cases}
$$

Multiply both sides by $\sin (m \pi x / L)$, where m is a positive integer.

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L}=g(x) \sin \frac{m \pi x}{L}
$$

Integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} g(x) \sin \frac{m \pi x}{L} d x
$$

Bring the constants in front.

$$
\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} g(x) \sin \frac{m \pi x}{L} d x
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the one where $n=m$.

$$
B_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
$$

Use the power-reducing formula for sine on the left and the product-to-sum formula for cosine-sine on the right.

$$
B_{n} \int_{0}^{L} \frac{1}{2}\left(1-\cos \frac{2 n \pi x}{L}\right) d x=\int_{0}^{L / 2} \sin \frac{n \pi x}{L} d x+\int_{L / 2}^{L} 2 \sin \frac{n \pi x}{L} d x
$$

Evaluate the integrals.

$$
B_{n}\left(\frac{L}{2}\right)=\frac{2 L}{n \pi} \sin ^{2} \frac{n \pi}{4}+\frac{2 L}{n \pi}\left[\cos \frac{n \pi}{2}-(-1)^{n}\right]
$$

So then

$$
B_{n}=\frac{4}{n \pi}\left[\sin ^{2} \frac{n \pi}{4}+\cos \frac{n \pi}{2}-(-1)^{n}\right] .
$$

Therefore,

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{4}{n \pi}\left[\sin ^{2} \frac{n \pi}{4}+\cos \frac{n \pi}{2}-(-1)^{n}\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L} .
$$

Part (e)

Here the initial condition is $u(x, 0)=f(x)$.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}=f(x)
$$

Multiply both sides by $\sin (m \pi x / L)$, where m is a positive integer.

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L}=f(x) \sin \frac{m \pi x}{L}
$$

Integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x
$$

Bring the constants in front.

$$
\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the one where $n=m$.

$$
B_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Evaluate the integral on the left.

$$
B_{n}\left(\frac{L}{2}\right)=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

So then

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Therefore, changing the dummy integration variable to r,

$$
u(x, t)=\sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L} .
$$

