
Haberman Applied PDEs 5e: Section 2.3 - Exercise 2.3.3 Page 1 of 7

Exercise 2.3.3

Consider the heat equation
∂u

∂t
= k

∂2u

∂x2
,

subject to the boundary conditions

u(0, t) = 0 and u(L, t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin
9πx

L
(b) u(x, 0) = 3 sin

πx

L
− sin

3πx

L

(c) u(x, 0) = 2 cos
3πx

L
(d) u(x, 0) =

{
1 0 < x ≤ L/2
2 L/2 < x < L

(e) u(x, 0) = f(x)

[Your answer in part (c) may involve certain integrals that do not need to be evaluated.]

Solution

The heat equation and its associated boundary conditions are linear and homogeneous, so the
method of separation of variables can be applied. Assume a product solution of the form
u(x, t) = X(x)T (t) and substitute it into the PDE

∂u

∂t
= k

∂2u

∂x2
→ ∂

∂t
[X(x)T (t)] = k

∂2

∂x2
[X(x)T (t)]

and the boundary conditions.

u(0, t) = 0 → X(0)T (t) = 0 → X(0) = 0

u(L, t) = 0 → X(L)T (t) = 0 → X(L) = 0

Now separate variables in the PDE.

X
dT

dt
= kT

d2X

dx2

Divide both sides by kX(x)T (t). Note that the final answer for u will be the same regardless
which side k is on. Constants are normally grouped with t.

1

kT

dT

dt︸ ︷︷ ︸
function of t

=
1

X

d2X

dx2︸ ︷︷ ︸
function of x

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

1

kT

dT

dt
=

1

X

d2X

dx2
= λ

As a result of applying the method of separation of variables, the PDE has reduced to two
ODEs—one in x and one in t.

1

kT

dT

dt
= λ

1

X

d2X

dx2
= λ
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Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the
solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: λ = α2.
The ODE for X becomes

d2X

dx2
= α2X.

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = C1 coshαx+ C2 sinhαx

Apply the boundary conditions now to determine C1 and C2.

X(0) = C1 = 0

X(L) = C1 coshαL+ C2 sinhαL = 0

The second equation reduces to C2 sinhαL = 0. Because hyperbolic sine is not oscillatory, C2

must be zero for the equation to be satisfied. This results in the trivial solution X(x) = 0, which
means there are no positive eigenvalues. Suppose secondly that λ is zero: λ = 0. The ODE for X
becomes

d2X

dx2
= 0.

The general solution is obtained by integrating both sides with respect to x twice.

X(x) = C3x+ C4

Apply the boundary conditions now to determine C3 and C4.

X(0) = C4 = 0

X(L) = C3L+ C4 = 0

The second equation reduces to C3 = 0. This results in the trivial solution X(x) = 0, which means
zero is not an eigenvalue. Suppose thirdly that λ is negative: λ = −β2. The ODE for X becomes

d2X

dx2
= −β2X.

The general solution is written in terms of sine and cosine.

X(x) = C5 cosβx+ C6 sinβx

Apply the boundary conditions now to determine C5 and C6.

X(0) = C5 = 0

X(L) = C5 cosβL+ C6 sinβL = 0

The second equation reduces to C6 sinβL = 0. To avoid the trivial solution, we insist that C6 6= 0.
Then

sinβL = 0

βL = nπ, n = 1, 2, . . .

βn =
nπ

L
.
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There are negative eigenvalues λ = −n2π2/L2, and the eigenfunctions associated with them are

X(x) = C5 cosβx+ C6 sinβx

= C6 sinβx → Xn(x) = sin
nπx

L
.

n only takes on the values it does because negative integers result in redundant values for λ. With
this formula for λ, the ODE for T becomes

1

kT

dT

dt
= −n

2π2

L2
.

Multiply both sides by kT .
dT

dt
= −kn

2π2

L2
T

The general solution is written in terms of the exponential function.

T (t) = C7 exp

(
−kn

2π2

L2
t

)
→ Tn(t) = exp

(
−kn

2π2

L2
t

)
According to the principle of superposition, the general solution to the PDE for u is a linear
combination of Xn(x)Tn(t) over all the eigenvalues.

u(x, t) =
∞∑
n=1

Bn exp

(
−kn

2π2

L2
t

)
sin

nπx

L

Apply the initial condition now to determine Bn.

u(x, 0) =

∞∑
n=1

Bn sin
nπx

L

Part (a)

Here the initial condition is u(x, 0) = 6 sin 9πx
L .

u(x, 0) =
∞∑
n=1

Bn sin
nπx

L
= 6 sin

9πx

L

By inspection we see that

Bn =

{
0 if n 6= 9

6 if n = 9
.

The general solution for u reduces to

u(x, t) = B9 exp

(
−k(9)

2π2

L2
t

)
sin

9πx

L
.

Therefore,

u(x, t) = 6 exp

(
−81π2k

L2
t

)
sin

9πx

L
.
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Part (b)

Here the initial condition is u(x, 0) = 3 sin πx
L − sin 3πx

L .

u(x, 0) =
∞∑
n=1

Bn sin
nπx

L
= 3 sin

πx

L
− sin

3πx

L

By inspection we see that

Bn =


0 if n 6= 1, n 6= 3

3 if n = 1

−1 if n = 3

.

The general solution for u reduces to

u(x, t) = B1 exp

(
−k(1)

2π2

L2
t

)
sin

πx

L
+B3 exp

(
−k(3)

2π2

L2
t

)
sin

3πx

L
.

Therefore,

u(x, t) = 3 exp

(
−π

2k

L2
t

)
sin

πx

L
− exp

(
−9π2k

L2
t

)
sin

3πx

L
.

Part (c)

Here the initial condition is u(x, 0) = 2 cos 3πx
L .

u(x, 0) =

∞∑
n=1

Bn sin
nπx

L
= 2 cos

3πx

L

Multiply both sides by sin(mπx/L), where m is a positive integer.

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
= 2 cos

3πx

L
sin

mπx

L

Integrate both sides with respect to x from 0 to L.

ˆ L

0

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
dx =

ˆ L

0
2 cos

3πx

L
sin

mπx

L
dx

Bring the constants in front.

∞∑
n=1

Bn

ˆ L

0
sin

nπx

L
sin

mπx

L
dx = 2

ˆ L

0
cos

3πx

L
sin

mπx

L
dx

Because the sine functions are orthogonal, the integral on the left is zero if n 6= m. As a result,
every term in the infinite series vanishes except for the one where n = m.

Bn

ˆ L

0
sin2

nπx

L
dx = 2

ˆ L

0
cos

3πx

L
sin

nπx

L
dx
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Note that if n = 3, then the integral on the right is zero because sine and cosine are orthogonal:
B3 = 0. Use the power-reducing formula for sine on the left and the product-to-sum formula for
cosine-sine on the right.

Bn

ˆ L

0

1

2

(
1− cos

2nπx

L

)
dx = 2

ˆ L

0

1

2

[
sin

(
3πx

L
+
nπx

L

)
− sin

(
3πx

L
− nπx

L

)]
Evaluate the integrals.

Bn

(
L

2

)
= − L

(3 + n)π
cos

(3 + n)πx

L

∣∣∣∣L
0

+
L

(3− n)π
cos

(3− n)πx
L

∣∣∣∣L
0

= − L

(3 + n)π
[cos(3π + nπ)− 1] +

L

(3− n)π
[cos(3π − nπ)− 1]

=
2nL

(n2 − 9)π
[1 + (−1)n]

Bn =
4n

(n2 − 9)π
[1 + (−1)n]

Notice that Bn simplifies if n is even or odd.

Bn =

0 if n = 2p− 1
4(2p)

[(2p)2 − 9]π
(2) if n = 2p, p = 1, 2, . . .

The general solution for u reduces to

u(x, t) =
∞∑

2p=2

B2p exp

(
−k(2p)

2π2

L2
t

)
sin

(2p)πx

L

=

∞∑
p=1

16p

(4p2 − 9)π
exp

(
−4kp2π2

L2
t

)
sin

2pπx

L
.

Therefore,

u(x, t) =
16

π

∞∑
p=1

p

4p2 − 9
exp

(
−4kp2π2

L2
t

)
sin

2pπx

L
.

Part (d)

Here the initial condition is u(x, 0) = 1 if 0 < x ≤ L/2 and u(x, 0) = 2 if L/2 < x < L.

u(x, 0) =
∞∑
n=1

Bn sin
nπx

L
= g(x) =

{
1 if 0 < x ≤ L/2
2 if L/2 < x < L

Multiply both sides by sin(mπx/L), where m is a positive integer.

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
= g(x) sin

mπx

L

Integrate both sides with respect to x from 0 to L.

ˆ L

0

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
dx =

ˆ L

0
g(x) sin

mπx

L
dx
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Bring the constants in front.

∞∑
n=1

Bn

ˆ L

0
sin

nπx

L
sin

mπx

L
dx =

ˆ L

0
g(x) sin

mπx

L
dx

Because the sine functions are orthogonal, the integral on the left is zero if n 6= m. As a result,
every term in the infinite series vanishes except for the one where n = m.

Bn

ˆ L

0
sin2

nπx

L
dx =

ˆ L

0
g(x) sin

nπx

L
dx

Use the power-reducing formula for sine on the left and the product-to-sum formula for
cosine-sine on the right.

Bn

ˆ L

0

1

2

(
1− cos

2nπx

L

)
dx =

ˆ L/2

0
sin

nπx

L
dx+

ˆ L

L/2
2 sin

nπx

L
dx

Evaluate the integrals.

Bn

(
L

2

)
=

2L

nπ
sin2

nπ

4
+

2L

nπ

[
cos

nπ

2
− (−1)n

]
So then

Bn =
4

nπ

[
sin2

nπ

4
+ cos

nπ

2
− (−1)n

]
.

Therefore,

u(x, t) =
∞∑
n=1

4

nπ

[
sin2

nπ

4
+ cos

nπ

2
− (−1)n

]
exp

(
−kn

2π2

L2
t

)
sin

nπx

L
.

Part (e)

Here the initial condition is u(x, 0) = f(x).

u(x, 0) =

∞∑
n=1

Bn sin
nπx

L
= f(x)

Multiply both sides by sin(mπx/L), where m is a positive integer.

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
= f(x) sin

mπx

L

Integrate both sides with respect to x from 0 to L.

ˆ L

0

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
dx =

ˆ L

0
f(x) sin

mπx

L
dx

Bring the constants in front.

∞∑
n=1

Bn

ˆ L

0
sin

nπx

L
sin

mπx

L
dx =

ˆ L

0
f(x) sin

mπx

L
dx
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Because the sine functions are orthogonal, the integral on the left is zero if n 6= m. As a result,
every term in the infinite series vanishes except for the one where n = m.

Bn

ˆ L

0
sin2

nπx

L
dx =

ˆ L

0
f(x) sin

nπx

L
dx

Evaluate the integral on the left.

Bn

(
L

2

)
=

ˆ L

0
f(x) sin

nπx

L
dx

So then

Bn =
2

L

ˆ L

0
f(x) sin

nπx

L
dx.

Therefore, changing the dummy integration variable to r,

u(x, t) =
∞∑
n=1

[
2

L

ˆ L

0
f(r) sin

nπr

L
dr

]
exp

(
−kn

2π2

L2
t

)
sin

nπx

L
.
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